ABSTRACT No. : GET1

CONNECTEDNESS OF THE FINE TOPOLOGY

*V. Jindal, **A. Jindal *Department of Mathematics, MNIT Jaipur, Jaipur, Rajasthan, India, vjindal.maths@mnit.ac.in **Department of Mathematics, IIIT Kota, Jaipur, Rajasthan, India, jindalanubha217@gmail.com

In this talk, we study the connectedness of the fine topology on C(X,Y), the set of all continuous functions from a Tychonoff space X to a metric space (Y,d). In order to understand connectedness of the space $C_f(X,Y)$ in a wider perspective, we first study the quasicomponents of the space $C_f(X,Y)$ for a metric space (Y,d). Our study shows that pseudocompactness and relative pseudocompactness play a vital role in the study of connectedness of the space $C_f(X,Y)$ we also determine the components of the space $H(\mathbb{R}^n)$, of all self homeomorphisms on the n-dimensional Euclidean space \mathbb{R}^n , where $H(\mathbb{R}^n)$ is considered as a subspace of the space $C(\mathbb{R}^n, \mathbb{R}^n)$ equipped with the fine topology.

ABSTRACT No. : GET2

WEAK AND STRONG FORMS OF REGULAR OPEN SETS

*V. Amsaveni,** M.Anitha, ***A.Subramanian *Dept.of Mathematics, Dr.G.U.Pope College of Education, Sawyerpuram, TamilNadu, India **Dept. of Mathematics, Rani Anna Govt. College, Tirunelveli, TamilNadu, India ***Dept. of Mathematics, M.D.T.Hindu College, Tirunelveli, TamilNadu, India

The notions of θ -open sets and δ -open sets in a topological space were studied by Velicko. In this paper several versions of nearly open sets have been introduced and studied by mixing the concepts of θ -Open sets and regular open sets and by mixing the concepts of δ -open sets and regular open sets.

ABSTRACT No. : GET3

HYPERGRAPH TOPOLOGY

*Deepthi Chandran R,** P B Ramkumar

*LBS Institute of Technology for Women, Thiruvananthapuram, India, deepthii.c@gmail.com ** Rajagiri School of Engineering & Technology, Cochin, India, ramkumar_pb@rajagiritech.edu.in

Consider a hypergraph H with vertex set $V = \{v_1, v_2, \dots, v_n\}$ and hyperedge set E =

 $\{e_1, e_2, \dots, e_m,\}$. A neighbourhood of a vertex v_i , is defined as the collection of vertices in

edges to which v_i belongs. Hence every edge is a neighbourhood. A hypergraph topology

is a family T of neighbourhood of vertices in V which satisfies the following conditions

• φ , $V \in T$

- If $N(vi), N(vj) \in T$ then $N(vi) \cap N(vj) \in T$
- If $N(vi) \in T$ for each $i \in I$ then $\cup_{i \in I} \in T$

The elements of T are called open sets. Thus a topology T defined on a hypergraph H is called hypergraph topological space, denoted by (H,T). Also for a subhypergraph, similarly a subhypergraph induced topology is defined. The concept of closed sets, continuity, compactness and connectedness and their properties are discussed. This is further extended to homeomorphism.